Patients with progression independent of relapse activity show increased white matter degeneration on diffusion tensor imaging maps of major white matter tracts

Mario Ocampo-Pineda1,2,3, Alessandro Cagol1,2,4, Pascal Benkert1, Muhamed Barakovic1,2,3, Po-Jui Lu1,2,3, Jannis Müller1,2,3, Sabine Schaeffelin1,2,5, Matthias Weigel1,2,3,6, Lester Melie-Garcia1,2,3

1 Translational Imaging in Neurology (ThInK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; 2 Department of Neurology, University Hospital Basel, Basel, Switzerland; 3 Research Center for Clinical Neuroimmunology and Neuroinflammation Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland; 4 Department of Health Sciences, University of Geneva, 1211 Geneva, Switzerland; 5 Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; 6 Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland

Background

- Progression independent of relapse activity (PIRA) has been described to occur in multiple sclerosis (MS) patients even in the earliest disease stages.
- PIRA patients show increased atrophy rates in multiple brain regions compared to stable patients.
- PIRA is the most frequent manifestation of disability accumulation across the full spectrum of traditional MS phenotypes.
- Whether increased degeneration of major white matter (WM) tracts is also associated with PIRA, is currently unknown.

Methods

Patients cohort
258 patients with RRMS, with clinical follow up (median follow-up: 4 years)

PIRA: ≥ 90 days ≥ 6 months
EDSS increase:
- 21.5 points if baseline EDSS 0;
- 21.0 point if baseline EDSS 1.0-5.5;
- 20.5 points if baseline EDSS >5.5.

- 39 RRMS patients with PIRA (74.4%; Age: 50.3±12.0y; EDSS: 3.5 [2.75, 4.25])
- 219 stable patients (63.9% female; 48.0±11.2y; EDSS: 2.0 [1.5, 3.0])

Propensity-score matching
(age, sex, disease duration, lesion volume, relapses in last 2 years, treatment)

Linear model, adjusted for multiple comparisons with the false-discovery rate

Diffusion Tensor Imaging (DTI) measures [wms-DTI, 1.8 mm iso, 3 min AT]

JHU DTI white matter atlas

Results

DTI alterations of patients with PIRA vs stable patients

Corpus callosum

<table>
<thead>
<tr>
<th>Fractional anisotropy</th>
<th>Mean diffusivity</th>
<th>Radial diffusivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td><p < 0.01, p < 0.05</td>
<td><p < 0.01, p < 0.05</td>
</tr>
<tr>
<td>Right</td>
<td><p < 0.01, p < 0.05</td>
<td><p < 0.01, p < 0.05</td>
</tr>
</tbody>
</table>

39 patients with PIRA
219 stable patients

Motor tracts

<table>
<thead>
<tr>
<th>Fractional anisotropy</th>
<th>Mean diffusivity</th>
<th>Radial diffusivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td><p < 0.01, p < 0.05</td>
<td><p < 0.01, p < 0.05</td>
</tr>
<tr>
<td>Right</td>
<td><p < 0.01, p < 0.05</td>
<td><p < 0.01, p < 0.05</td>
</tr>
</tbody>
</table>

39 patients with PIRA
219 stable patients

Conclusions and perspectives

- Patients with PIRA showed increased degeneration in white matter regions of the corpus callosum and in motor tracts compared to stable patients.
- Hereby suggesting that white matter damage is associated with the development of PIRA (Wallerian degeneration?)

Future work

- Increase the sample size and explore other diffusion metrics to assess neurodegeneration
- Explore the relation between white matter damage & specific lesion types

References

Acknowledgment
Swiss MS Cohort study

Disclosure: A.C. is supported by EUROPSTAR EU/33082 HORIZON2020 and received speaker honoraria from Novartis; M.B. has received research funding by Biogen for developing spinal cord MRI; P.J.L. received speaker fees, research support, travel support, and/or served on advisory boards by Swiss MS Society, Bayer, Biogen, Bristol Myers Squibb, Celgene, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (ii) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (ii) speaker fees from Bayer, Biogen, Bristol Myers Squibb, Celgene, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (iii) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (ii) speaker fees from Bayer, Biogen, Bristol Myers Squibb, Celgene, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (iii) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; and license fees for Neurostatus-UHB products; grants from Novartis, Innosuisse, and Roche; C. G. The University Hospital Basel (USB), as the employer of Cristina Granziera, has received the following fees which were used exclusively for research support: (ii) advisory board and consultancy fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (iii) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (iii) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (iv) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; and license fees for Neurostatus-UHB products; grants from Novartis, Innosuisse, and Roche; L. M. The University Hospital Basel (USB), as the employer of Lars Melie-Garcia, has received the following fees which were used exclusively for research support: (ii) advisory board and consultancy fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (iv) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; and license fees for Neurostatus-UHB products; grants from Novartis, Innosuisse, and Roche; L. K. The University Hospital Basel (USB), as the employer of Ludwig Kappos, has received the following fees which were used exclusively for research support: (i) advisory board and consultancy fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (ii) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; (iv) speaker fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro, and Roche; and license fees for Neurostatus-UHB products; grants from Novartis, Innosuisse, and Roche;